Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428399

RESUMEN

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Asunto(s)
Nucléolo Celular , Células Eucariotas , Ribosomas , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Células Eucariotas/química , Células Eucariotas/citología , Células Eucariotas/metabolismo
2.
Mol Ecol ; 33(6): e17287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263702

RESUMEN

The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.


Asunto(s)
Genoma Viral , Virus , Animales , Sesgo , Metilación de ADN/genética , Genoma Viral/genética , Filogenia , Virus/genética , Células Procariotas/química , Células Eucariotas/química
3.
Nature ; 625(7994): 393-400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030725

RESUMEN

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Asunto(s)
Células Eucariotas , Biosíntesis de Proteínas , ARN Mensajero , Sistemas de Lectura , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Codón/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Factor 2 de Elongación Peptídica/metabolismo , Sistemas de Lectura/genética , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
4.
Nucleic Acids Res ; 52(4): 1720-1735, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38109317

RESUMEN

Nucleotide excision repair (NER) removes helix-distorting DNA lesions and is therefore critical for genome stability. During NER, DNA is unwound on either side of the lesion and excised, but the rules governing incision site selection, particularly in eukaryotic cells, are unclear. Excision repair-sequencing (XR-seq) sequences excised NER fragments, but analysis has been limited because the lesion location is unknown. Here, we exploit accelerated cytosine deamination rates in UV-induced CPD (cyclobutane pyrimidine dimer) lesions to precisely map their locations at C to T mismatches in XR-seq reads, revealing general and species-specific patterns of incision site selection during NER. Our data indicate that the 5' incision site occurs preferentially in HYV (i.e. not G; C/T; not T) sequence motifs, a pattern that can be explained by sequence preferences of the XPF-ERCC1 endonuclease. In contrast, the 3' incision site does not show strong sequence preferences, once truncated reads arising from mispriming events are excluded. Instead, the 3' incision is partially determined by the 5' incision site distance, indicating that the two incision events are coupled. Finally, our data reveal unique and coupled NER incision patterns at nucleosome boundaries. These findings reveal key principles governing NER incision site selection in eukaryotic cells.


Asunto(s)
Citosina , Reparación por Escisión , Citosina/química , Desaminación , Daño del ADN , Células Eucariotas/química
5.
Biol Chem ; 404(11-12): 1101-1121, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37709756

RESUMEN

The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.


Asunto(s)
Biología , Estabilidad del ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo
6.
Nature ; 618(7966): 767-773, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286610

RESUMEN

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Asunto(s)
Evolución Biológica , Eucariontes , Fósiles , Bacterias/química , Bacterias/metabolismo , Eucariontes/química , Eucariontes/clasificación , Eucariontes/metabolismo , Células Eucariotas/química , Células Eucariotas/clasificación , Células Eucariotas/metabolismo , Esteroles/análisis , Esteroles/biosíntesis , Esteroles/aislamiento & purificación , Esteroles/metabolismo , Sedimentos Geológicos/química , Vías Biosintéticas , Organismos Acuáticos/química , Organismos Acuáticos/clasificación , Organismos Acuáticos/metabolismo , Biota , Filogenia , Historia Antigua
7.
RNA ; 28(1): 3-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670847

RESUMEN

This review covers research findings reported over the past decade concerning the ability of low complexity (LC) domains to self-associate in a manner leading to their phase separation from aqueous solution. We focus our message upon the reductionist use of two forms of phase separation as biochemical assays to study how LC domains might function in living cells. Cells and their varied compartments represent extreme examples of material condensates. Over the past half century, biochemists, structural biologists, and molecular biologists have resolved the mechanisms driving innumerable forms of macromolecular condensation. In contrast, we remain largely ignorant as to how 10%-20% of our proteins actually work to assist in cell organization. This enigmatic 10%-20% of the proteome corresponds to gibberish-like LC sequences. We contend that many of these LC sequences move in and out of a structurally ordered, self-associated state as a means of offering a combination of organizational specificity and dynamic pliability to living cells. Finally, we speculate that ancient proteins may have behaved similarly, helping to condense, organize, and protect RNA early during evolution.


Asunto(s)
Condensados Biomoleculares/química , Células Eucariotas/química , Glicoles/química , Isoxazoles/química , Proteínas/química , ARN/química , Condensados Biomoleculares/metabolismo , Eucariontes , Células Eucariotas/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Enlace de Hidrógeno , Metionina/química , Metionina/metabolismo , Origen de la Vida , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas/metabolismo , ARN/metabolismo , Soluciones , Agua/química , Agua/metabolismo
8.
RNA ; 28(1): 52-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772787

RESUMEN

Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.


Asunto(s)
Condensados Biomoleculares/química , ADN/química , Proteínas de Unión al ARN/química , ARN/química , Factores de Transcripción/química , Transcripción Genética , Sitios de Unión , Condensados Biomoleculares/metabolismo , Compartimento Celular , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , ADN/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Retroalimentación Fisiológica , Gránulos de Ribonucleoproteína de Células Germinales/química , Gránulos de Ribonucleoproteína de Células Germinales/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
9.
RNA ; 28(1): 36-47, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772786

RESUMEN

Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.


Asunto(s)
Condensados Biomoleculares/química , Cuerpos de Procesamiento/química , Proteínas de Unión al ARN/química , ARN/química , Ribonucleoproteínas/química , Gránulos de Estrés/química , Condensados Biomoleculares/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Cuerpos de Procesamiento/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Gránulos de Estrés/metabolismo , Terminología como Asunto , Transcripción Genética
10.
RNA ; 28(1): 48-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772790

RESUMEN

In this short Perspective, we discuss how recent dynamic live-cell imaging experiments have challenged our understanding of mechanisms driving functional molecular interactions in vivo. While we have generally considered the formation of functional biomolecular complexes as resulting from the stable assembly of two or more partner molecules, here we entertain the possibility that function may actually be maintained while molecules are rapidly exchanged within a complex. We postulate that at high effective concentrations, even very weak interactions can lead to strong binding site occupancy and thereby mediate function in a highly dynamic fashion. This new perspective in our definition of what represents a functional complex in living cells and in vivo could significantly alter how we define the nature of molecular transactions critical for mediating regulation in the cellular context. These less conventional principles also allow a broadening of the mechanistic options we should explore when interpreting essential biological processes such as gene regulation.


Asunto(s)
Condensados Biomoleculares/química , Sustancias Macromoleculares/química , Proteínas de Unión al ARN/química , ARN/química , Sitios de Unión , Condensados Biomoleculares/metabolismo , Compartimento Celular , Células Eucariotas/química , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Humanos , Sustancias Macromoleculares/metabolismo , Simulación de Dinámica Molecular , Imagen Molecular , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
11.
RNA ; 28(1): 27-35, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772789

RESUMEN

Many biomolecular condensates are thought to form via liquid-liquid phase separation (LLPS) of multivalent macromolecules. For those that form through this mechanism, our understanding has benefitted significantly from biochemical reconstitutions of key components and activities. Reconstitutions of RNA-based condensates to date have mostly been based on relatively simple collections of molecules. However, proteomics and sequencing data indicate that natural RNA-based condensates are enriched in hundreds to thousands of different components, and genetic data suggest multiple interactions can contribute to condensate formation to varying degrees. In this Perspective, we describe recent progress in understanding RNA-based condensates through different levels of biochemical reconstitutions as a means to bridge the gap between simple in vitro reconstitution and cellular analyses. Complex reconstitutions provide insight into the formation, regulation, and functions of multicomponent condensates. We focus on two RNA-protein condensate case studies: stress granules and RNA processing bodies (P bodies), and examine the evidence for cooperative interactions among multiple components promoting LLPS. An important concept emerging from these studies is that composition and stoichiometry regulate biochemical activities within condensates. Based on the lessons learned from stress granules and P bodies, we discuss forward-looking approaches to understand the thermodynamic relationships between condensate components, with the goal of developing predictive models of composition and material properties, and their effects on biochemical activities. We anticipate that quantitative reconstitutions will facilitate understanding of the complex thermodynamics and functions of diverse RNA-protein condensates.


Asunto(s)
Condensados Biomoleculares/química , Factores Eucarióticos de Iniciación/química , Cuerpos de Procesamiento/química , Proteínas de Unión al ARN/química , ARN/química , Gránulos de Estrés/química , Animales , Condensados Biomoleculares/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Estadísticos , Cuerpos de Procesamiento/metabolismo , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Gránulos de Estrés/metabolismo , Termodinámica
12.
Biochim Biophys Acta Biomembr ; 1864(1): 183792, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582763

RESUMEN

The Na+/Ca2+ exchangers (NCXs) modulate the Ca2+ signaling and homeostasis in health and disease. The transport cycle turnover rates (kcat) and the kcat/Km values of eukaryotic NCXs are ~104-times higher than those of prokaryotic NCXs. Three ion-coordinating residues (out of twelve) differ between eukaryotic NCXs and NCX_Mj. The replacement of three ion-coordinating residues in NCX_Mj does not increase kcat, probably due to the structural rigidity of NCX_Mj. Phospholipids and cholesterol increase (up to 10-fold) the transport rates in the cardiac NCX1.1, but not in NCX_Mj. A lipid environment can partially contribute to the huge kinetic variances among NCXs.


Asunto(s)
Señalización del Calcio/genética , Células Eucariotas/química , Células Procariotas/química , Intercambiador de Sodio-Calcio/metabolismo , Células Eucariotas/metabolismo , Homeostasis/genética , Humanos , Cinética , Fosfolípidos/química , Fosfolípidos/metabolismo , Células Procariotas/metabolismo , Intercambiador de Sodio-Calcio/genética
13.
Chem Commun (Camb) ; 57(88): 11713-11716, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34695173

RESUMEN

A spatially segregative coacervate-in-proteinosome hybrid microcompartment is constructed by co-encapsulation of either positively or negatively charged polyelectrolytes within proteinosomes with enhanced cascade enzymatic reactions, providing a step towards the development of artificial eukaryotic cell like microcompartments.


Asunto(s)
Células Eucariotas/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Polietilenglicoles/metabolismo , Células Eucariotas/química , Peroxidasa de Rábano Silvestre/química , Estructura Molecular , Polielectrolitos/química , Polietilenglicoles/química
14.
J Struct Biol ; 213(4): 107801, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582983

RESUMEN

With the rapid increase and accessibility of high-resolution imaging technologies of cells, the interpretation of results relies more and more on the assumption that the three-dimensional integrity of the surrounding cellular landscape is not compromised by the experimental setup. However, the only available technology for directly probing the structural integrity of whole-cell preparations at the nanoscale is electron cryo-tomography, which is time-consuming, costly, and complex. We devised an accessible, inexpensive and reliable screening assay to quickly report on the compatibility of experimental protocols with preserving the structural integrity of whole-cell preparations at the nanoscale. Our Rapid Cell Integrity Assessment (RCIA) assay is executed at room temperature and relies solely on light microscopy imaging. Using cellular electron cryo-tomography as a benchmark, we verify that RCIA accurately unveils the adverse impact of reagents and/or protocols such as those used for virus inactivation or to arrest dynamic processes on the cellular nanoarchitecture.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Células Eucariotas/ultraestructura , Imagenología Tridimensional/métodos , Nanoestructuras/ultraestructura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Animales , Células Cultivadas , Células Eucariotas/química , Células Eucariotas/clasificación , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/ultraestructura , Ratones , Microscopía Fluorescente/métodos , Mitocondrias/química , Mitocondrias/ultraestructura , Células 3T3 NIH , Nanoestructuras/química , Reproducibilidad de los Resultados , Células THP-1
15.
Nat Chem Biol ; 17(5): 608-614, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33686294

RESUMEN

Many RNA-binding proteins undergo liquid-liquid phase separation, which underlies the formation of membraneless organelles, such as stress granules and P-bodies. Studies of the molecular mechanism of phase separation in vitro are hampered by the coalescence and sedimentation of organelle-sized droplets interacting with glass surfaces. Here, we demonstrate that liquid droplets of fused in sarcoma (FUS)-a protein found in cytoplasmic aggregates of amyotrophic lateral sclerosis and frontotemporal dementia patients-can be stabilized in vitro using an agarose hydrogel that acts as a cytoskeleton mimic. This allows their spectroscopic characterization by liquid-phase NMR and electron paramagnetic resonance spectroscopy. Protein signals from both dispersed and condensed phases can be observed simultaneously, and their respective proportions can be quantified precisely. Furthermore, the agarose hydrogel acts as a cryoprotectant during shock-freezing, which facilitates pulsed electron paramagnetic resonance measurements at cryogenic temperatures. Surprisingly, double electron-electron resonance measurements revealed a compaction of FUS in the condensed phase.


Asunto(s)
Crioprotectores/química , Hidrogeles/química , Proteína FUS de Unión a ARN/química , Sefarosa/química , Materiales Biomiméticos/química , Clonación Molecular , Citoesqueleto/química , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucariotas/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas Recombinantes/química
16.
Angew Chem Int Ed Engl ; 60(19): 10724-10729, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33587794

RESUMEN

The conformations and dynamics of proteins can be influenced by crowding from the large concentrations of macromolecules within cells. Intrinsically disordered proteins (IDPs) exhibit chain compaction in crowded solutions in vitro, but no such effects were observed in cultured mammalian cells. Here, to increase intracellular crowding, we reduced the cell volume by hyperosmotic stress and used an IDP as a crowding sensor for in-cell single-molecule spectroscopy. In these more crowded cells, the IDP exhibits compaction, slower chain dynamics, and much slower translational diffusion, indicating a pronounced concentration and length-scale dependence of crowding. In vitro, these effects cannot be reproduced with small but only with large polymeric crowders. The observations can be explained with polymer theory and depletion interactions and indicate that IDPs can diffuse much more efficiently through a crowded cytosol than a globular protein of similar dimensions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Células Eucariotas/química , Células HeLa , Humanos , Conformación Proteica
17.
Curr Opin Cell Biol ; 68: 105-112, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188984

RESUMEN

Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.


Asunto(s)
Citoesqueleto/fisiología , Septinas/fisiología , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Polaridad Celular , Citoplasma/metabolismo , Citoesqueleto/química , Células Eucariotas/química , Células Eucariotas/metabolismo , Hongos , Humanos , Microtúbulos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Polimerizacion , Septinas/química
18.
Curr Opin Cell Biol ; 68: 90-97, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166737

RESUMEN

Chromosomes are selectively organized within the nuclei of interphase cells reflecting the current fate of each cell and are reorganized in response to various physiological cues to maintain homeostasis. Although substantial progress is being made to establish the various patterns of genome architecture, less is understood on how chromosome folding/positioning is achieved. Here, we discuss recent insights into the cellular mechanisms dictating chromatin movements including the use of epigenetic modifications and allosterically regulated transcription factors, as well as a nucleoskeleton system comprised of actin, myosin, and actin-binding proteins. Together, these nuclear factors help coordinate the positioning of both general and cell-specific genomic architectural features.


Asunto(s)
Células Eucariotas/química , Genoma , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Epigénesis Genética , Humanos , Interfase , Miosinas/metabolismo
19.
Nat Rev Mol Cell Biol ; 22(3): 215-235, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33169001

RESUMEN

Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology.


Asunto(s)
Sustancias Macromoleculares , Complejos Multiproteicos/fisiología , Animales , Fenómenos Bioquímicos , Fenómenos Fisiológicos Celulares , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/fisiología , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Complejos Multiproteicos/química , Orgánulos/química , Orgánulos/genética , Orgánulos/metabolismo , Agregado de Proteínas/fisiología
20.
Curr Opin Cell Biol ; 68: 55-63, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33049465

RESUMEN

The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.


Asunto(s)
Citoesqueleto de Actina/genética , Archaea/citología , Proteínas Arqueales/genética , Evolución Biológica , Células Eucariotas/citología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiología , Actinas/química , Actinas/genética , Animales , Archaea/química , Archaea/genética , Archaea/aislamiento & purificación , Proteínas Arqueales/química , Proteínas Arqueales/fisiología , Eucariontes/citología , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/química , Células Eucariotas/fisiología , Humanos , Metagenómica , Filogenia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...